
CS 61A Final Exam Study Guide – Page 1

Exceptions are raised with a raise statement.
raise <expression>

<expression> must evaluate to a subclass of BaseException or
an instance of one.
Exceptions are constructed like any other object. E.g.,
TypeError('Bad argument!')

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

The <try suite> is executed first.
If, during the course of executing the
<try suite>, an exception is raised
that is not handled otherwise, and
If the class of the exception inherits
from <exception class>, then
The <except suite> is executed, with
<name> bound to the exception.

car cdr-stream
Stored

explicitly
Evaluated
lazily

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

A stream is a Scheme pair, but
the cdr is evaluated lazily

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which yields an iterable object.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>.
An iterable object has a method __iter__ that returns an iterator.

>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

>>> items = counts.__iter__()
>>> try:
 while True:
 item = items.__next__()
 print(item)
 except StopIteration:
 pass

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))
> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)
13

select "abraham" as parent, "barack" as child union
select "abraham" , "clinton" union
select "delano" , "herbert" union
select "fillmore" , "abraham" union
select "fillmore" , "delano" union
select "fillmore" , "grover" union
select "eisenhower" , "fillmore";

create table parents as

select [expression] as [name], [expression] as [name], ... ;

select [columns] ; from [table] where [condition] order by [order]

create table dogs as
 select "abraham" as name, "long" as fur union
 select "barack" , "short" union
 select "clinton" , "long" union
 select "delano" , "long" union
 select "eisenhower" , "short" union
 select "fillmore" , "curly" union
 select "grover" , "short" union
 select "herbert" , "curly";

E

F

A D G

B C H

select a.child as first, b.child as second
 from parents as a, parents as b
 where a.parent = b.parent and a.child < b.child;

First Second
barack clinton

abraham delano
abraham grover
delano groverwith

 ancestors(ancestor, descendent) as (
 select parent, child from parents union
 select ancestor, child
 from ancestors, parents
 where parent = descendent
)
select ancestor from ancestors where descendent="herbert";

ancestor
delano
fillmore

eisenhower

create table pythagorean_triples as
 with
 i(n) as (
 select 1 union select n+1 from i where n < 20
)
 select a.n as a, b.n as b, c.n as c
 from i as a, i as b, i as c
 where a.n < b.n and a.n*a.n + b.n*b.n = c.n*c.n;

a b c

3 4 5
5 12 13

6 8 10
8 15 17
9 12 15

12 16 20

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns and rows

A column
has a

name and
a type

A row has a value for each column

The number of groups is the number of unique values of an expression
A having clause filters the set of groups that are aggregated
select weight/legs, count(*) from animals
 group by weight/legs
 having count(*)>1; kind legs weight

dog 4 20

cat 4 10

ferret 4 10

parrot 2 6

penguin 2 10

t-rex 2 12000

weight/
legs count(*)

5 2

2 2

weight/legs=5

weight/legs=2

weight/legs=2

weight/legs=3

weight/legs=5

weight/legs=6000

def reduce(f, s, initial):
 """Combine elements of s pairwise
 using f, starting with initial.

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """
 for x in s:
 initial = f(initial, x)
 return initial

reduce(pow, [1, 2, 3, 4], 2) -> 16777216

2 1

pow

2 2

4 3

64 4

16,777,216

[

[

pow

pow

pow

(car (cons 1 2)) -> 1
(cdr (cons 1 2)) -> 2
(car (cons 1 (/ 1 0))) -> ERROR
(cdr (cons 1 (/ 1 0))) -> ERROR

(car (cons-stream 1 2)) -> 1
(cdr-stream (cons-stream 1 2)) -> 2
(car (cons-stream 1 (/ 1 0))) -> 1
(cdr-stream (cons-stream 1 (/ 1 0))) -> ERROR

(define (range-stream a b)
 (if (>= a b)
 nil
 (cons-stream a (range-stream (+ a 1) b))))
(define lots (range-stream 1 10000000000000000000))
scm> (car lots)
1
scm> (car (cdr-stream lots))
2
scm> (car (cdr-stream (cdr-stream lots)))
3

(define ones (cons-stream 1 ones)) 1 1 1 ...
(define (add-streams s t)
 (cons-stream (+ (car s) (car t))
 (add-streams (cdr-stream s)
 (cdr-stream t))))

(define ints (cons-stream 1 (add-streams ones ints))) 2 3 ...1

+ +

(define (map-stream f s)
 (if (null? s)
 nil
 (cons-stream (f (car s))
 (map-stream f
 (cdr-stream s)))))

(define (filter-stream f s)
 (if (null? s)
 nil
 (if (f (car s))
 (cons-stream (car s)
 (filter-stream f (cdr-stream s)))
 (filter-stream f (cdr-stream s)))))

map(func, iterable):
filter(func, iterable):
zip(first_iter, second_iter):

Iterate over func(x) for x in iterable
Iterate over x in iterable if func(x)
Iterate over co-indexed (x, y) pairs

Return an iterator  
over the elements of  
an iterable value

Return the next element
in an iterator

iter(iterable):

next(iterator):

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> next(iter(s))
3

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> k = iter(d)
>>> next(k)
'one'
>>> next(k)
'three'
>>> next(k)
'two'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
3
>>> next(v)
2

A StopIteration exception is
raised whenever next is
called on an empty iterator
>>> contains('strength', 'stent')
True
>>> contains('strength', 'rest')
False
def contains(a, b):
 ai = iter(a)
 for x in b:
 try:
 while next(ai) != x:
 pass # do nothing
 except StopIteration:
 return False
 return True

A generator function is a function that yields values instead of returning them
A normal function returns once; a generator function can yield multiple times
A generator is an iterator created automatically by calling a generator function
When a generator function is called, it returns a generator
>>> def plus_minus(x):
... yield x
... yield -x
>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3

class Countdown:
 def __init__(self, start):
 self.start = start
 def __iter__(self):
 v = self.start
 while v > 0:
 yield v
 v -= 1

>>> list(Countdown(5))
[5, 4, 3, 2, 1]
>>> for x in Countdown(3):
... print(x)
3
2
1

def a_then_b(a, b):
 yield from a
 yield from b

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

OR
A yield from statement yields all
values from an iterator or iterable

Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form:
• If expression: (if <predicate> <consequent> <alternative>)
• Binding names: (define <name> <expression>)
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
 (define (plus4 x) (+ x 4))
 (define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
 ((lambda (x y z) (+ x y (square z))) 1 2 3)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
They also used a non-obvious notation for linked lists.
• A (linked) Scheme list is a pair in which the second element is

nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has an arbitrary value for the second element of the

last pair. Dotted lists may not be well-formed lists.

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

Symbols normally refer to values; how do we refer to symbols?
 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in
the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

Dots can be used in a quoted list to specify the second
element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)
 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

A Scheme list is written as elements in parentheses:

(<element0> <element1> ... <elementn>)

Each <element> can be a combination or atom (primitive).
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))
The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

A Scheme list

 '(+ 1'
 ' (- 23)'
 ' (* 4 5.6))'

Lines Expression

A Parser takes a sequence of lines and returns an expression.

Lexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.
Each call to scheme_read consumes the input tokens for exactly
one expression.

Base case: symbols and numbers
Recursive call: scheme_read sub-expressions and combine them

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for name
lookup

The structure
of the Scheme
interpreter

To apply a user-defined procedure, create a new frame in which
formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))
(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

CS 61A Final Exam Study Guide – Page 2

A procedure call that has not yet returned is active. Some
procedure calls are tail calls. A Scheme interpreter should
support an unbounded number of active tail calls.
A tail call is a call expression in a tail context, which are:
• The last body expression in a lambda expression
• Expressions 2 & 3 (consequent & alternative) in a tail context

if expression
(define (factorial n k)
 (if (= n 0) k

 (factorial (- n 1)
 (* k n))))

(define (length s)
 (if (null? s) 0

 (+ 1 (length (cdr s)))))

(define (length-tail s)
 (define (length-iter s n)
 (if (null? s) n
 (length-iter (cdr s) (+ 1 n))))
 (length-iter s 0))

Recursive call is a tail call

Not a tail call

Creates a new
environment each

time a user-
defined procedure

is applied

A basic interpreter has two parts: a parser and an evaluator.

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)

class Pair:
 """A Pair has first and second attributes.

 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

(* 3  
 (+ 4 5) 
 (* 6 7 8))

Calculator Expression

Expression Tree

secondfirst
*

secondfirst
3

secondfirst secondfirst
nil

secondfirst
+

secondfirst
4

secondfirst
5 nil

secondfirst
*

secondfirst
6

secondfirst
7

secondfirst
8 nil

Representation as Pairs

The Calculator language
has primitive expressions
and call expressions

* 3

+ 4 5 * 6 87

