
Represents
integers exactly

Represents real
numbers with

finite precision

Numeric types in Python:
>>> type(2)
<class 'int'>
>>> type(1.5)
<class 'float'>

CS 61A Midterm 2 Study Guide — Page 1

Rational implementation using functions:

>>> digits = [1, 8, 2, 8]
>>> len(digits)
4
>>> digits[3]
8
>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

>>> pairs=[[1, 2], [2, 2], [3, 2], [4, 4]]
>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1
>>> same_count
2

A sequence of  
fixed-length sequences

A name for each element in a
fixed-length sequence

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>,

which must yield an iterable value
(a sequence)

2. For each element in that sequence,
in order:
A. Bind <name> to that element in

the current frame
B. Execute the <suite>

Executing a for statement:

Lists:

Unpacking in a 
for statement:

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

..., -3, -2, -1, 0, 1, 2, 3, 4, ...

range(-2, 2)
Length: ending value - starting value
Element selection: starting value + index

List constructor

Range with a 0
starting value

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this
evaluation procedure:
1. Add a new frame with the current frame as its parent
2. Create an empty result list that is the value of the

expression
3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1
B. If <filter exp> evaluates to a true value, then add

the value of <map exp> to the result list

List comprehensions:

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Membership: Slicing:

Slicing creates
a new object

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'
>>> 'here' in "Where's Waldo?"
True
>>> 234 in [1, 2, 3, 4, 5]
False
>>> [2, 3, 4] in [1, 2, 3, 4]
False

Strings as sequences:

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a == b
True
>>> a
[10, 20]
>>> b
[10, 20]

>>> suits = ['coin', 'string', 'myriad']
>>> suits.pop()
'myriad'
>>> suits.remove('string')
>>> suits.append('cup')
>>> suits.extend(['sword', 'club'])
>>> suits[2] = 'spade'
>>> suits
['coin', 'cup', 'spade', 'club']
>>> suits[0:2] = ['diamond']
>>> suits
['diamond', 'spade', 'club']
>>> suits.insert(0, 'heart')
>>> suits
['heart', 'diamond', 'spade', 'club']

>>> nums = {'I': 1.0, 'V': 5, 'X': 10}
>>> nums['X']
10
>>> nums['I'] = 1
>>> nums['L'] = 50
>>> nums
{'X': 10, 'L': 50, 'V': 5, 'I': 1}
>>> sum(nums.values())
66
>>> dict([(3, 9), (4, 16), (5, 25)])
{3: 9, 4: 16, 5: 25}
>>> nums.get('A', 0)
0
>>> nums.get('V', 0)
5
>>> {x: x*x for x in range(3,6)}
{3: 9, 4: 16, 5: 25}

List & dictionary mutation:

Identity:
<exp0> is <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to the same object
Equality:
<exp0> == <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to equal values
Identical objects are always equal values

The parent
frame contains
the balance of

withdraw

Every call
decreases the
same balance

def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 return 'No funds'
 balance = balance - amount
 return balance
 return withdraw

>>> withdraw = make_withdraw(100)
>>> withdraw(25)
75
>>> withdraw(25)
50

x = 2Status Effect
•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to number 2
in the first frame of the current environment

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

•nonlocal x
•"x" is bound in a  
non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

•nonlocal x
•"x" is not bound in
a non-local frame

SyntaxError: no binding for nonlocal 'x' found

•nonlocal x
•"x" is bound in a
non-local frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

You can copy a list by calling the list
constructor or slicing the list from the
beginning to the end.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth. Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n)
by a factor

Linear growth. E.g., factors or exp

Logarithmic growth. E.g., exp_fast
Doubling the problem only increments R(n)

Constant. The problem size doesn't matter

Quadratic growth. E.g., overlap
Incrementing n increases R(n) by the
problem size n

Type dispatching: Look up a cross-type implementation of an
operation based on the types of its arguments
Type coercion: Look up a function for converting one type to
another, then apply a type-specific implementation.

Constants: Constant terms do not affect
the order of growth of a process

Logarithms: The base of a logarithm does
not affect the order of growth of a process

Nesting: When an inner process is repeated
for each step in an outer process,multiply
the steps in the outer and inner processes
to find the total number of steps

⇥(n) ⇥(500 · n) ⇥(
1

500
· n)

⇥(log2 n) ⇥(log10 n) ⇥(lnn)

def overlap(a, b):
 count = 0
 for item in a:
 if item in b:
 count += 1
 return count

Outer: length of a

Inner: length of b

If a and b are both length n,
then overlap takes steps⇥(n2)
Lower-order terms: The fastest-growing part
of the computation dominates the total

⇥(n2 + n)⇥(n2) ⇥(n2
+ 500 · n+ log2 n+ 1000)

R
(n

)
=

�
(f

(n
))

k 1
·f

(n
)

�
R

(n
)

�
k 2

·f
(n

)

me
an

s
th

at
 t

he
re

 a
re

 p
os

it
iv

e
co

ns
ta

nt
s
k 1
 a

nd
 k

2
su

ch
 t

ha
t

fo
r

al
l
n

la
rg

er
 t

ha
n

so
me

 m

digits

pairs

def	rational(n,	d):	
				def	select(name):	
								if	name	==	'n':	
												return	n	
								elif	name	==	'd':	
												return	d	
				return	select

This
function

represents
a rational

number

Constructor is a
higher-order function

Selector calls x

The result of calling repr on a value is
what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

The result of calling str on a value is  
what Python prints using the print function

>>> print(today)
2014-10-13

str and repr are both polymorphic; they apply to any object
repr invokes a zero-argument method __repr__ on its argument

>>> today.__repr__()
'datetime.date(2014, 10, 13)'

>>> today.__str__()
'2014-10-13'

def memo(f):
 cache = {}
 def memoized(n):
 if n not in cache:
 cache[n] = f(n)
 return cache[n]
 return memoized

Memoization:

Call to fib
Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Remove and return
the last element

Remove a value

Add all
values

Replace a
slice with

values

Add an element
at an index

def	numer(x):	
				return	x('n')	
def	denom(x):	
				return	x('d')

Functions that aggregate iterable arguments
• sum(iterable[, start]) -> value
• max(iterable[, key=func]) -> value  
max(a, b, c, ...[, key=func]) -> value 
min(iterable[, key=func]) -> value  
min(a, b, c, ...[, key=func]) -> value

• all(iterable) -> bool 
any(iterable) -> bool

When a class is called:
1.A new instance of that class is created:
2.The __init__ method of the class is called with the new object as its first

argument (named self), along with any additional arguments provided in the
call expression.

An account instance

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

balance: 0 holder: 'Jim'

__init__ is called a
constructor

self should always be
bound to an instance of
the Account class or a
subclass of Account

A new instance is
created by calling a

class

<expression> . <name>
The <expression> can be any valid Python expression.
The <name> must be a simple name.
Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>.

Dot expression

Call expression

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
10
>>> a.deposit(2)
12

Function call: all
arguments within

parentheses

Method invokation:
One object before
the dot and other
arguments within

parentheses

Assignment statements with a dot expression on their left-hand side affect
attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance attribute
• If the object is a class, then assignment sets a class attribute

To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned
3. If not, <name> is looked up in the class, which yields a class

attribute value
4. That value is returned unless it is a function, in which case a

bound method is returned instead

or
 return super().withdraw(amount + self.withdraw_fee)

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

CS 61A Midterm 2 Study Guide — Page 2

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Instance
attributes of
jim_account

Instance
attributes of
tom_account

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.
>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Python object system:

 class Link:
 empty = ()

Some zero
length sequence

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]
 def __len__(self):
 return 1 + len(self.rest)

					def	__repr__(self):	
									if	self.rest:	
													rest_str	=	',	'	+	repr(self.rest)	
									else:	
													rest_str	=	''	
									return	'Link({0}{1})'.format(self.first,	rest_str)	

Built-in isinstance
function: returns True if
branch has a class that
is or inherits from Tree

Sequence abstraction special names:

__len__

__getitem__ Element selection []

Built-in len function

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

Verifies that tree is
bound to a list

Creates a list from a
sequence of branches

def root(tree):
 return tree[0]
def branches(tree):
 return tree[1:]
def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(root, branches=[]):
Verifies the

tree definition

def is_leaf(tree):
 return not branches(tree)

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def	leaves(tree):	
				"""The	leaf	values	in	tree.	
				>>>	leaves(fib_tree(5))	
				[1,	0,	1,	0,	1,	1,	0,	1]	
				"""	
				if	is_leaf(tree):	
								return	[root(tree)]	
				else:	
								return	sum([leaves(b)	for	b	in	branches(tree)],	[])	

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2),
 right = fib_tree(n-1)
 fib_n = root(left) + root(right)
 return tree(fib_n, [left, right])

 def is_leaf(self):
 return not self.branches

def extend_link(s, t):
 if s is Link.empty:
 return t
 else:
 return Link(s.first, extend_link(s.rest, t))

>>> s = Link(3, Link(4))
>>> extend_link(s, s)
Link(3, Link(4, Link(3, Link(4))))

Contents of the
repr string of
a Link instance

def	leaves(tree):	
				"The	leaf	values	in	Tree	instance"	
			if	tree.is_leaf():	
								return	[tree.root]	
				else:	
								return	sum([leaves(b)	for	b	in	tree.branches],	[])

def	fib_tree(n):	
				if	n	==	0	or	n	==	1:	
								return	Tree(n)	
				else:	
								left	=	fib_Tree(n-2)	
								right	=	fib_Tree(n-1)	
								fib_n	=	left.root+right.root	
								return	Tree(fib_n,[left,	right])

2

3

1

0 1 1 1

0 1

Root value
Branch

Leaf

Values

NodesPathRecursive description:
•A tree has a root value
and a list of branches
•Each branch is a tree
•A tree with zero branches
is called a leaf

Relative description:
•Each location is a node
•Each node has a value
•One node can be the
parent/child of another

class Tree:
 def __init__(self, root, branches=[]):
 self.root = root
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

first: 4

rest:

Link instance

first: 5

rest:

Link instance
Link(4, Link(5))

A binary search tree is a binary tree where each root is larger than all
values in its left branch and smaller than all values in its right branch

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4

>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

class BTree(Tree):
 empty = Tree(None)
 def __init__(self, root, left=empty, right=empty):
 Tree.__init__(self, root, [left, right])
 @property
 def left(self):
 return self.branches[0]
 @property
 def right(self):
 return self.branches[1]

7

3

1 5

9

11

Python built-in sets:

