61A Lecture 4

Announcements

Iteration Example

The Fibonacci Sequence

fib  pred L:é
curr L‘é sr 13
nls AN
k|3 %
def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # 0th and 1st Fibonacci numbers
k=1 # curr is the kth Fibonacci number
while k < n: o

pred, curr = curr,pred + curr

> k=k+1

return curr { The next Fibonacci number is the sum of }

the current one and its predecessor

Discussion Question

Is this alternative definition of fib the
same or different from the original fib?

def fib(n):

Compute the nth Fibonacci number?

pred, curr = @, 1 pred, curr =1, 0
=1 k=0

while k < n:
pred, curr = curr, pred + curr
k=k+1

return curr

(Demo)

Designing Functions

Describing Functions
def square(x): def fib(n):
"""Return X *x X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

x is a real number n is an integer greater than or equal to 1

A function's range is the set of output values it might possibly return.

returns a non-negative
real number

returns a Fibonacci number

A pure function's behavior is the relationship it creates between input and output.

return value is the
square of the input

return value is the nth Fibonacci number

A Guide to Designing Function
Give each function exactly one job, but make it apply to many related situations

>>> round(1.23) >>> round(1.23, 1) >>> round(1.23, @) >>> round(1.23, 5
1 1.2 1 1.23

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

(Demo)




Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Finding common structure allows for shared implementation

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5
Mii=1+243+4+5 =15
k=1

1% 4+2% 435 +43 4 5% =225

8 8 8 8 8 .
‘7§+£+®+ﬁ+ﬁ =3.04

(Demo)

Summation Example

"def cube(k): :iFunct(iontof ?ls;ng;e a:)gument}
‘ return pow(k, 3) not cated rerm

i k' A formal parameter that will
def summation(n, {term be bound to a function
"""Sum the first 'n terms of a sequence.

_>>> summation(5, {cube)
225
W {J;he cube function is passed }
total, k - O, 1 as an argument value
while k <= n:
total, k = total + term(k), k + 1
return total ) )

0+1+8+27 +64+ 125 J { The function bound to term J

gets called here

Functions as Return Values

(Demo)

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that

returns a function

def{make_adderi(n):

"""Return a function that takes one argument k and returns k + n.

>>>{add_three = make_adder (3) i< The name add_three is bound
>>> add_three(?) . to a function

idef adder(k):

- A def statement within
Lo return: another def statement
return adder

returnik + n

Can refer to names in the

enclosing function

Call Expressions as Operator Expressions

An expression that

An expression that

evaluates to a function evaluates to its argument

Operator Operand

{ make_adder (1)

[ func_adder (k) | <
ma dder(1)
func make;édder(n) ) make_adder( n ):
def adder(k):

cetuctumm k* 0 T func adder (k)




