
61A Lecture 5

Announcements

Office Hours: You Should Go!

3

You are not alone!

http://cs61a.org/office-hours.html

Environments for Higher-Order Functions

Environments Enable Higher-Order Functions

(Demo)

5

Environment diagrams describe how higher-order functions work!

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or 
 A function that returns a function as a return value

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

2

1

Environments for Nested Definitions

(Demo)

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

• The parent of a frame is the
parent of the function called

Nested def

8Interactive Diagram

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.

9

Local Names

(Demo)

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def)
consists of one local frame, followed by the global frame.

11Interactive Diagram

Function Composition

(Demo)

The Environment Diagram for Function Composition

2

1

3

1

2

3

Return value of make_adder is
an argument to compose1

13Interactive Diagram

Lambda Expressions

(Demo)

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

15

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

16

