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Create a function value:   func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.
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“y” is not 

found

“y” is not 
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def) 
consists of one local frame, followed by the global frame.
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Lambda expressions in Python cannot contain statements at all!
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