
61A Lecture 5

Announcements

Office Hours: You Should Go!

3

Office Hours: You Should Go!

3

You are not alone!

Office Hours: You Should Go!

3

You are not alone!

Office Hours: You Should Go!

3

You are not alone!

http://cs61a.org/office-hours.html

Environments for Higher-Order Functions

Environments Enable Higher-Order Functions

5

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions are values in our programming language

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or 
 A function that returns a function as a return value

Environments Enable Higher-Order Functions

5

Environment diagrams describe how higher-order functions work!

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or 
 A function that returns a function as a return value

Environments Enable Higher-Order Functions

(Demo)

5

Environment diagrams describe how higher-order functions work!

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or 
 A function that returns a function as a return value

Names can be Bound to Functional Arguments

6Interactive Diagram

Names can be Bound to Functional Arguments

6Interactive Diagram

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

2

1

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

2

1

Environments for Nested Definitions

(Demo)

Environment Diagrams for Nested Def Statements

8Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3
Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

Nested def

8Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

• The parent of a frame is the
parent of the function called

Nested def

8Interactive Diagram

How to Draw an Environment Diagram

9

How to Draw an Environment Diagram

When a function is defined:

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

9

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.

9

Local Names

(Demo)

Local Names are not Visible to Other (Non-Nested) Functions

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a sequence of frames.

11Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def)
consists of one local frame, followed by the global frame.

11Interactive Diagram

Function Composition

(Demo)

The Environment Diagram for Function Composition

13Interactive Diagram

The Environment Diagram for Function Composition

13Interactive Diagram

The Environment Diagram for Function Composition

13Interactive Diagram

The Environment Diagram for Function Composition

13Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

13Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

13Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

13Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

13Interactive Diagram

The Environment Diagram for Function Composition

2

1

3

Return value of make_adder is
an argument to compose1

13Interactive Diagram

The Environment Diagram for Function Composition

2

1

3

Return value of make_adder is
an argument to compose1

13Interactive Diagram

The Environment Diagram for Function Composition

2

1

3

1

2

3

Return value of make_adder is
an argument to compose1

13Interactive Diagram

Lambda Expressions

(Demo)

Lambda Expressions

15

Lambda Expressions

>>> x = 10

15

Lambda Expressions

>>> x = 10

>>> square = x * x

15

Lambda Expressions

>>> x = 10

>>> square = x * x

An expression: this one
evaluates to a number

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

A function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

with formal parameter x
A function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

Must be a single expression

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

Must be a single expression

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

15

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

16

Lambda Expressions Versus Def Statements

VS

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x VS

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

16

