61A Lecture 13

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n <= 1:
ot @ return 0
fib(5) elif n ==
return 1
else:

fib(4)

0

fib(1)

fib(0)

http://en.wikipedia.org/wiki/File:Fibonacci. jpa

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
{cache = {} | map to return values

def memoized(n):

if n not in cache:
cache[n] = f(n)

return cache[n]

returni memoized Same behavior as f,
if f is a pure function

(Demo)
Memoized Tree Recursion
et O e Call to fib
-~ fib(5)
/ \ @ Found in cache
o Skipped
fib(3) - fib(4)
\\ ®
{fib(1) fib(2) Space
/ AN

1 fib(0) fib(1) |
-

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Fibonacci Space Consumption

fib(5)
At any moment there is a set of active environments //////////,//f \\\\\\\\\\\\\\
Values and frames in active environments consume memory £ib(3) £ib(4)
Memory that is used for other values and frames can be recycled / AN
fib(1) fib(2)
1‘ f'b({ﬂ f}(l) fib(2) fib(3)
il il
Active environments: ‘ ‘ - > 7 f\
fib(0) fib(1) fib(1) fib(2)
. . . 0 1 / N
- Environments for any function calls currently being evaluated ‘ ‘
[1 fib(@) fib(1)
- Parent environments of functions named in active environments ‘ ‘
Assume we have 0 1
reached this step
(Demo)
I ive Di
Fibonacci Space Consumption
. Has an active environment
/ Fib(s) \ Can be reclaimed
fib(3) fib(4)
/ N _
fib(1) fib(2) Time
‘ e N fib(2)
fib(@) fib(1) / \ / \
‘ ‘ fib(0) fib(1)
\ \ Ve AN

Assume we have

reached this step

Comparing Implementations
Implementations of the same functional abstraction can require different resources
Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

def factors(n): Time (number of divisions

Slow: Test each k from 1 through n n

Fast: Test each k from 1 to square root n

For every k, n/k is also a factor! Greatest integer less than v

Question: How many time does each implementation use division? (Demo)

Orders of Growth

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

n: size of the problem

R(n): measurement of some resource used (time or space)
R(n) = O(f(n))

means that there are positive constants ki and kz such that

for all n larger than some minimum m

Order of Growth of Counting Factors
Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

def factors(n): Time Space
Slow: Test each k from 1 through n O(n) R —
integers occupy a
Fast: Test each k from 1 to square root n fixed amount of

For every k, n/k is also a factor! e(vn) SPace

(Demo)

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):

if n == n 1 ifn=0
return 1 "= 0 A
else: b-b""" otherwise
return b * exp(b, n-1)
def square(x):
return x*x
def exp_fast(b, n):
if”:iml 1 ifn=0
return
elif n % 2 == 0: b ={ (b)) if mis even
.return square(exp_fast(b, n//2)) b-b"1 if nis odd

els

e:
return b x exp_fast(b, n-1)

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

Time Space

def exp(b, n):

def square(x):
return xxx

def exp_fast(b, n):
if n == 0:
return 1
elif n % 2 == 0:
return square(exp_fast(b, n//2))
else:
return b * exp_fast(b, n-1)

O(logn) O(logn)

Comparing Orders of Growth

Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
500 - n —_
O(n) (500 - n) Oz5 ™)
Logarithms: The base of a logarithm does not affect the order of growth of a process

O(log, n) O(Iog10) O(lnn)

Nesting: When an inner process is repeated for each step in an outer process, multiply the
steps in the outer and inner processes to find the total number of steps

If a and b are both length n,
then overlap takes ©(n?) steps

def overlap(a, b):
count = 0@

; Outer: length of a
for item in a:
if item in b:
count += 1| Inner: length of b

return count
Lower-order terms: The fastest-growing part of the computation dominates the total

o(n?) O(n* +n) O(n* +500 - n + log, n + 1000)

Comparing orders of growth (n is the problem size)

o)

o(n?)

O(n)

O(logn)

(1)

Exponential growth. Recursive fib takes

1+5 .
O(¢") steps, where &= — = 1.61828

Incrementing the problem scales R(n) by a factor

Quadratic growth. E.g., overlap
Incrementing n increases R(n) by the problem size n

Linear growth. E.g., slow factors or exp

Logarithmic growth. E.g., exp_fast
Doubling the problem only increments R(n).

Constant. The problem size doesn't matter

