
61A Lecture 20

Announcements

Sets

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
>>> s
{1, 2, 3, 4}

4

(Demo)

Implementing Sets

What we should be able to do with a set:

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2

• Intersection: Return a set with any elements in set1 and set2

• Adjoin: Return a set with all elements in s and a value v

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjoin

1

3
4

2

1

3
4

2

5

Sets as Linked Lists

Sets as Unordered Sequences

Proposal 1: A set is represented by a linked list that contains no duplicate items.

(Demo)

7

Time order of growth

⇥(1)

⇥(n)

Time depends on whether
& where v appears in s

Assuming v either  
does not appear in s  

or  
appears in a uniformly

distributed random location

def empty(s):
 return s is Link.empty

def contains(s, v):
 """Return whether set s contains value v.

 >>> s = Link(1, Link(3, Link(2)))
 >>> contains(s, 2)
 True
 """

�(n)

�(n2)

Sets as Unordered Sequences

�(n2)

Time order of growth

The size of the set

If sets are
the same size

8

def adjoin(s, v):
 if contains(s, v):
 return s
 else:
 return Link(v, s)

def intersect(set1, set2):
 in_set2 = lambda v: contains(set2, v)
 return filter_link(in_set2, set1)

def union(set1, set2):
 not_in_set2 = lambda v: not contains(set2, v)
 set1_not_set2 = filter_link(not_in_set2, set1)
 return extend_link(set1_not_set2, set2)

Return elements x for which
in_set2(x) returns a true value

Return a linked list containing all elements in
set1_not_set2 followed by all elements in set2

Sets as Ordered Linked Lists

Sets as Ordered Sequences

Proposal 2: A set is represented by a linked list with unique elements that is  
 ordered from least to greatest

10

Parts of the program that... Assume that sets are... Using...

Use sets to contain values Unordered collections empty, contains, adjoin,  
intersect, union

Implement set operations Ordered linked lists first, rest, <, >, ==

Different parts of a program may make different assumptions about data

Searching an Ordered List

11

first: 1

rest:

Link instance

first: 2

rest:

Link instance

�(n)contains

Time order of growthOperation

�(n)adjoin

first: 1

rest:

Link instance

first: 3

rest:

Link instance

first: 5

rest:

Link instance

s:

>>> s = Link(1, Link(3, Link(5)))
>>> contains(s, 1)
True
>>> contains(s, 2)
False
>>> t = adjoin(s, 2)

t: (Demo)

Set Mutation

Adding to an Ordered List

13

first: 1

rest:

Link instance

first: 3

rest:

Link instance

first: 5

rest:

Link instance

add(s, 0)

s:

Adding to an Ordered List

14

first: 1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

s:

add(s, 4)

add(s, 3)

Adding to an Ordered List

15

first: 1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 5 4

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

add(s, 6)

s:

Adding to an Ordered List

16

first: 1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 5 4

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

first: 6

rest:

Link instance

s:

Adding to an Ordered List

17

def add(s, v):
 """Add v to a set s and return s.

 >>> s = Link(1, Link(3, Link(5)))
 >>> add(s, 0)
 Link(0, Link(1, Link(3, Link(5))))
 >>> add(s, 3)
 Link(0, Link(1, Link(3, Link(5))))
 >>> add(s, 4)
 Link(0, Link(1, Link(3, Link(4, Link(5)))))
 >>> add(s, 6)
 Link(0, Link(1, Link(3, Link(4, Link(5, Link(6))))))
 """
 assert not empty(s), "Cannot add to an empty set."
 if s.first > v:
 s.first, s.rest = __________________________ , _____________________________
 elif s.first < v and empty(s.rest):
 s.rest = ___
 elif s.first < v:
 __
 return s

v Link(s.first, s.rest)

add(s.rest, v)

Link(v, s.rest)

s:

Set Operations

Intersecting Ordered Linked Lists

Proposal 2: A set is represented by a linked list with unique elements that is  
ordered from least to greatest

19

def intersect(set1, set2):
 if empty(set1) or empty(set2):
 return Link.empty
 else:
 e1, e2 = set1.first, set2.first
 if e1 == e2:
 return Link(e1, intersect(set1.rest, set2.rest))
 elif e1 < e2:
 return intersect(set1.rest, set2)
 elif e2 < e1:
 return intersect(set1, set2.rest)

�(n)Order of growth? (Demo)

