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Announcements



Sets



Sets

One more built-in Python container type 

• Set literals are enclosed in braces 

• Duplicate elements are removed on construction 

• Sets have arbitrary order, just like dictionary entries

>>> s = {3, 2, 1, 4, 4} 
>>> s 
{1, 2, 3, 4} 
>>> 3 in s 
True 
>>> len(s) 
4 
>>> s.union({1, 5}) 
{1, 2, 3, 4, 5} 
>>> s.intersection({6, 5, 4, 3}) 
{3, 4} 
>>> s 
{1, 2, 3, 4}
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(Demo)



Implementing Sets

What we should be able to do with a set: 

• Membership testing: Is a value an element of a set? 

• Union: Return a set with all elements in set1 or set2 

• Intersection: Return a set with any elements in set1 and set2 

• Adjoin: Return a set with all elements in s and a value v
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Sets as Linked Lists



Sets as Unordered Sequences

Proposal 1: A set is represented by a linked list that contains no duplicate items.

(Demo)
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Time order of growth

⇥(1)

⇥(n)

Time depends on whether 
& where v appears in s

Assuming v either  
does not appear in s  

or  
appears in a uniformly 

distributed random location

def empty(s): 
    return s is Link.empty

def contains(s, v): 
    """Return whether set s contains value v. 

    >>> s = Link(1, Link(3, Link(2)))  
    >>> contains(s, 2) 
    True 
    """



�(n)

�(n2)

Sets as Unordered Sequences

�(n2)

Time order of growth

The size of the set

If sets are 
the same size
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def adjoin(s, v): 
    if contains(s, v): 
        return s 
    else: 
        return Link(v, s)

def intersect(set1, set2): 
    in_set2 = lambda v: contains(set2, v) 
    return filter_link(in_set2, set1)

def union(set1, set2): 
    not_in_set2 = lambda v: not contains(set2, v) 
    set1_not_set2 = filter_link(not_in_set2, set1) 
    return extend_link(set1_not_set2, set2)

Return elements x for which 
in_set2(x) returns a true value

Return a linked list containing all elements in 
set1_not_set2 followed by all elements in set2 



Sets as Ordered Linked Lists



Sets as Ordered Sequences

Proposal 2: A set is represented by a linked list with unique elements that is  
            ordered from least to greatest
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Parts of the program that... Assume that sets are... Using...

Use sets to contain values Unordered collections empty, contains, adjoin,  
intersect, union

Implement set operations Ordered linked lists first, rest, <, >, ==

Different parts of a program may make different assumptions about data



Searching an Ordered List
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first: 1

rest:

Link instance

first: 2

rest:

Link instance

�(n)contains

Time order of growthOperation

�(n)adjoin

first: 1

rest:

Link instance

first: 3

rest:

Link instance

first: 5

rest:

Link instance

s:

>>> s = Link(1, Link(3, Link(5))) 
>>> contains(s, 1) 
True 
>>> contains(s, 2) 
False 
>>> t = adjoin(s, 2)

t: (Demo)



Set Mutation



Adding to an Ordered List
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first: 1

rest:

Link instance

first: 3

rest:

Link instance

first: 5

rest:

Link instance

add(s, 0)

s:



Adding to an Ordered List
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first:   1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

s:

add(s, 4)

add(s, 3)



Adding to an Ordered List
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first:   1 0

rest:

Link instance

first: 3

rest:

Link instance

first:   5 4

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

add(s, 6)

s:



Adding to an Ordered List
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first:   1 0

rest:

Link instance

first: 3

rest:

Link instance

first:   5 4

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

first: 6

rest:

Link instance

s:



Adding to an Ordered List
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def add(s, v): 
    """Add v to a set s and return s. 

    >>> s = Link(1, Link(3, Link(5)))  
    >>> add(s, 0) 
    Link(0, Link(1, Link(3, Link(5)))) 
    >>> add(s, 3) 
    Link(0, Link(1, Link(3, Link(5)))) 
    >>> add(s, 4) 
    Link(0, Link(1, Link(3, Link(4, Link(5))))) 
    >>> add(s, 6) 
    Link(0, Link(1, Link(3, Link(4, Link(5, Link(6)))))) 
    """ 
    assert not empty(s), "Cannot add to an empty set." 
    if s.first > v: 
        s.first, s.rest = __________________________ , _____________________________ 
    elif s.first < v and empty(s.rest): 
        s.rest = ___________________________________________________________________ 
    elif s.first < v: 
        ____________________________________________________________________________ 
    return s

v Link(s.first, s.rest)

add(s.rest, v)

Link(v, s.rest)

s:



Set Operations



Intersecting Ordered Linked Lists

Proposal 2: A set is represented by a linked list with unique elements that is  
ordered from least to greatest
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def intersect(set1, set2): 
    if empty(set1) or empty(set2): 
        return Link.empty 
    else: 
        e1, e2 = set1.first, set2.first 
        if e1 == e2: 
            return Link(e1, intersect(set1.rest, set2.rest)) 
        elif e1 < e2: 
            return intersect(set1.rest, set2) 
        elif e2 < e1: 
            return intersect(set1, set2.rest)

�(n)Order of growth? (Demo)


