61A Lecture 29

Announcements

Data Processing

Data Processing

Many data sets can be processed sequentially:
The set of all Twitter posts

Votes cast in an election

Sensor readings of an airplane

The positive integers: 1, 2, 3,

However, the sequence interface we used before does not always apply
A sequence has a finite, known length

A sequence allows element selection for any element

Some important ideas in big data processing:
Implicit representations of streams of sequential data
Declarative programming languages to manipulate and transform data

Distributed computing

lterators

lterators

A container can provide an iterator that provides access to its elements in some order

iter(iterable): Return an iterator over the elements 53> § = a; 4, 5] >>> u = iter(s)
of an iterable value 53> t = iter(s) >>> next(u)
>>> next(t) 3
next(iterator): Return the next element in an iterator 3 >>> next(t)
>>> next(t) 5
4 >>> next(u)

4
Iterators are always ordered, even if the container that produced them is not

>>>d = {'one’': 1, "two': 2, 'three': 3} Keys and values are iterated over in an
>>> k = iter(d) >>> v = iter(d.values()) arbitrary order which is non-random, varies
>>> next(k) >>> next(v) across Python implementations, and depends on
‘one’ 1 the dictionary’s history of insertions and
>>> next(k) >>> next(v) deletions. If keys, values and items views are
‘three’ 3 iterated over with no intervening modifications
>>> next(k) >>> next(v) to the dictionary, the order of items will
two 2 directly correspond.

(Demo)

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

For Statements

The For Statement

for <name> in <expression>:
<suite>
1. Evaluate the header <expression>, which must evaluate to an iterable object

2. For each element in that sequence, in order:

A.Bind <name> to that element in the first frame of the current environment
B. Execute the <suite>

When executing a for statement, iter returns an iterator and next provides each item:

>>> counts = [1, 2, 3] >>> counts = [1, 2, 3]

>>> for item in counts: >>> items = iter(counts)
print(item) >>> try:

1 while True:

5 item = next(items)

3 print(item)

except StopIteration:
pass # Do nothing

N -

Processing Iterators

A StopIteration exception is raised whenever next is called on an empty iterator

v v
>>> contains('strength', 'stent') def contains(a, b):
True ai = iter(a)
>>> contains('strength’', 'rest’) for x in b:
False try:
>>> contains('strength’', 'tenth") while next(ai) != x:
True pass

except StopIteration:
return False
return True

Built-In Iterator Functions

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

map(func, iterable): Iterate over func(x) for x in iterable
filter(func, iterable): Iterate over x in iterable if func(x)
zip(first_iter, second_iter): Iterate over co-indexed (x, y) pairs
reversed(sequence): Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable): Create a list containing all x in iterable
tuple(iterable): Create a tuple containing all x in iterable
sorted(iterable): Create a sorted list containing x in iterable

(Demo)

Generators

Generators and Generator Functions

>>> def plus_minus(x):
yield x
yield -x

>>> t = plus_minus(3)

>>> next(t)

3

>>> next(t)

-3

>>> t

<generator object plus minus ...>

A generator function is a function that yields values instead of returning them
A normal function returns once; a generator function can yield multiple times
A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

(Demo)

lterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

>>> list(Countdown(5)) class Countdown:
[5, 4, 3, 2, 1] def _init_ (self, start):
>>> for x in Countdown(3): self.start = start
.o print(x)
3 def __iter__ (self):
2 v = self.start
1 while v > @:
yield v

v -=1

Generators & lterators

Generators can Yield from lterators
A yield from statement yields all values from an iterator or iterable (Python 3.3)

>>> list(a_then_b([3, 4], [5, 6]))

[3, 4, 5, 6]
def a_then_b(a, b): def a_then_b(a, b):
for x in a: yield from a
yield x yield from b
for x in b:
yield x

>>> list(countdown(5))
[5J 4) 3) 2) 1]

def countdown(k):
if k > 0:
yield k
yield from countdown(k-1)

(Demo)

