
61A Lecture 30

Announcements

Efficient Sequence Processing

Sequence Operations

4

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

Space: ⇥(1)

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

sum_primes(1,	6)

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

sum_primes(1,	6)

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

filter

source:

f: is_prime

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

0

filter

source:

f: is_prime

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1
0

filter

source:

f: is_prime

2

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

filter

source:

f: is_prime

2 3

2

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

filter

source:

f: is_prime

23 4

5

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

filter

source:

f: is_prime

23 4 5

5

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1)

1

filter

source:

f: is_prime

23 45

10

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1) ⇥(1)

1

filter

source:

f: is_prime

23 45

10

sum_primes(1,	6)

sum

source:

total:

range iterator

next:

end: 6

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

4

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def	sum_primes(a,	b):	
				total	=	0	
				x	=	a	
				while	x	<	b:	
								if	is_prime(x):	
												total	=	total	+	x	
								x	=	x	+	1	
				return	total

def	sum_primes(a,	b):	
				return	sum(filter(is_prime,	range(a,	b)))

Space: ⇥(1) ⇥(1)

(Demo)

1

filter

source:

f: is_prime

23 45

10

sum_primes(1,	6)

Streams

Streams are Lazy Scheme Lists

6

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

(car (cons 1 (/ 1 0))) -> ERROR

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

(car (cons 1 (/ 1 0))) -> ERROR

(cdr (cons 1 (/ 1 0))) -> ERROR

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

(car (cons 1 (/ 1 0))) -> ERROR

(cdr (cons 1 (/ 1 0))) -> ERROR

(cons-stream 1 (/ 1 0)) -> (1 . #[delayed])

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

(car (cons 1 (/ 1 0))) -> ERROR

(cdr (cons 1 (/ 1 0))) -> ERROR

(cons-stream 1 (/ 1 0)) -> (1 . #[delayed])

(car (cons-stream 1 (/ 1 0))) -> 1

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

(car (cons 1 (/ 1 0))) -> ERROR

(cdr (cons 1 (/ 1 0))) -> ERROR

(cons-stream 1 (/ 1 0)) -> (1 . #[delayed])

(car (cons-stream 1 (/ 1 0))) -> 1

(cdr-stream (cons-stream 1 (/ 1 0))) -> ERROR

Errors only occur when expressions are evaluated:

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

6

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(Demo)

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

(cons 1 (/ 1 0)) -> ERROR

(car (cons 1 (/ 1 0))) -> ERROR

(cdr (cons 1 (/ 1 0))) -> ERROR

(cons-stream 1 (/ 1 0)) -> (1 . #[delayed])

(car (cons-stream 1 (/ 1 0))) -> 1

(cdr-stream (cons-stream 1 (/ 1 0))) -> ERROR

Errors only occur when expressions are evaluated:

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

(define	(range-stream	a	b)
		(if	(>=	a	b)	
						nil	
						(cons-stream	a	(range-stream	(+	a	1)	b))))

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

(define	(range-stream	a	b)
		(if	(>=	a	b)	
						nil	
						(cons-stream	a	(range-stream	(+	a	1)	b))))

(define	lots	(range-stream	1	10000000000000000000))

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

(define	(range-stream	a	b)
		(if	(>=	a	b)	
						nil	
						(cons-stream	a	(range-stream	(+	a	1)	b))))

(define	lots	(range-stream	1	10000000000000000000))

scm>	(car	lots)
1

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

(define	(range-stream	a	b)
		(if	(>=	a	b)	
						nil	
						(cons-stream	a	(range-stream	(+	a	1)	b))))

(define	lots	(range-stream	1	10000000000000000000))

scm>	(car	lots)
1
scm>	(car	(cdr-stream	lots))
2

Stream Ranges are Implicit

7

A stream can give on-demand access to each element in order

(define	(range-stream	a	b)
		(if	(>=	a	b)	
						nil	
						(cons-stream	a	(range-stream	(+	a	1)	b))))

(define	lots	(range-stream	1	10000000000000000000))

scm>	(car	lots)
1
scm>	(car	(cdr-stream	lots))
2
scm>	(car	(cdr-stream	(cdr-stream	lots)))
3

Infinite Streams

Integer Stream

9

Integer Stream

An integer stream is a stream of consecutive integers

9

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

9

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

(define	(int-stream	start)	
		(cons-stream	start	(int-stream	(+	start	1))))

9

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

(define	(int-stream	start)	
		(cons-stream	start	(int-stream	(+	start	1))))

9

(Demo)

Stream Processing

(Demo)

Recursively Defined Streams

11

Recursively Defined Streams

The rest of a constant stream is the constant stream

11

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

(define	ints	(cons-stream	1	(add-streams	ones	ints)))

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

(define	ints	(cons-stream	1	(add-streams	ones	ints))) 1

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

(define	ints	(cons-stream	1	(add-streams	ones	ints))) 1

+

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

(define	ints	(cons-stream	1	(add-streams	ones	ints))) 1

+

 2

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

(define	ints	(cons-stream	1	(add-streams	ones	ints))) 1

+ +

 2

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define	ones	(cons-stream	1	ones))

11

1 1 1 1 1 1 ...

Combine two streams by separating each into car and cdr

(define	(add-streams	s	t)
		(cons-stream	(+	(car	s)	(car	t))
															(add-streams	(cdr-stream	s)
																												(cdr-stream	t))))

(define	ints	(cons-stream	1	(add-streams	ones	ints))) 2 3 4 5 6 7 ...1

+ +

 2

Example: Repeats

12

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2 3 3 1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)1

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2 3 3 1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)1 2 2

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2 3 3 1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)1 2 2 3 3

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2 3 3 1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)1 2 2 3 3 3 3

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2 3 3 1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Example: Repeats

12

(define	a	(cons-stream	1	(cons-stream	2	(cons-stream	3	a))))

What's	(prefix	(g	a)	8)?		(__		__		__		__		__		__		__		__)1 2 2 3 3 3 3

(define	(f	s)	(cons-stream	(car	s)		
																											(cons-stream	(car	s)	
																																								(f	(cdr-stream	s)))))

(define	(g	s)	(cons-stream	(car	s)	
																											(f	(g	(cdr-stream	s)))))	

1

What's	(prefix	(f	a)	8)?		(__		__		__		__		__		__		__		__)
1 1 2 2 3 3 1 1

What's	(prefix	a	8)?						(__		__		__		__		__		__		__		__)
1 2 3 1 2 3 1 2

Higher-Order Stream Functions

Higher-Order Functions on Streams

14

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

(Demo)

(define	(map	f	s)	
		(if	(null?	s)		
						nil	
						(cons	(f	(car	s))	
												(map	f		
																	(cdr	s)))))	
			
(define	(filter	f	s)	
		(if	(null?	s)	
						nil	
						(if	(f	(car	s))	
										(cons	(car	s)		
																(filter	f	(cdr	s)))	
										(filter	f	(cdr	s)))))	

(define	(reduce	f	s	start)	
		(if	(null?	s)		
						start	
						(reduce	f	
														(cdr	s)	
														(f	start	(car	s)))))	

Higher-Order Functions on Streams

14

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

(Demo)

(define	(map								f	s)	
		(if	(null?	s)		
						nil	
						(cons								(f	(car	s))	
												(map								f		
																	(cdr								s)))))	
			
(define	(filter								f	s)	
		(if	(null?	s)	
						nil	
						(if	(f	(car	s))	
										(cons								(car	s)		
																(filter								f	(cdr								s)))	
										(filter								f	(cdr								s)))))	

(define	(reduce								f	s	start)	
		(if	(null?	s)		
						start	
						(reduce								f	
														(cdr								s)	
														(f	start	(car	s)))))	

Higher-Order Functions on Streams

14

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

(Demo)

(define	(map-stream	f	s)	
		(if	(null?	s)		
						nil	
						(cons-stream	(f	(car	s))	
												(map-stream	f		
																	(cdr-stream	s)))))	
			
(define	(filter-stream	f	s)	
		(if	(null?	s)	
						nil	
						(if	(f	(car	s))	
										(cons-stream	(car	s)		
																(filter-stream	f	(cdr-stream	s)))	
										(filter-stream	f	(cdr-stream	s)))))	

(define	(reduce-stream	f	s	start)	
		(if	(null?	s)		
						start	
						(reduce-stream	f	
														(cdr-stream	s)	
														(f	start	(car	s)))))	

Higher-Order Functions on Streams

14

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

(Demo)

A Stream of Primes

15

A Stream of Primes

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

For any prime k, any larger prime must not be divisible by k.

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n

• Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

15

(Demo)

For any prime k, any larger prime must not be divisible by k.

