
61A Lecture 35

Announcements

Distributed Computing

Distributed Computing

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

• Computers are independent — they do not share memory

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

• Computers are independent — they do not share memory

• Coordination is enabled by messages passed across a network

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

• Computers are independent — they do not share memory

• Coordination is enabled by messages passed across a network

• Individual programs have differentiating roles

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

• Computers are independent — they do not share memory

• Coordination is enabled by messages passed across a network

• Individual programs have differentiating roles

Distributed computing for large-scale data processing:

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

• Computers are independent — they do not share memory

• Coordination is enabled by messages passed across a network

• Individual programs have differentiating roles

Distributed computing for large-scale data processing:

• Databases respond to queries over a network

4

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task

• Computation is performed in parallel by many computers

• Information can be restricted to certain computers

• Redundancy and geographic diversity improve reliability

Characteristics of distributed computing:

• Computers are independent — they do not share memory

• Coordination is enabled by messages passed across a network

• Individual programs have differentiating roles

Distributed computing for large-scale data processing:

• Databases respond to queries over a network

• Data sets can be partitioned across multiple machines (next lecture)

4

Network Messages

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments

• Transfer a program to be executed by another computer

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments

• Transfer a program to be executed by another computer

Messages conform to a message protocol adopted by both the sender (to encode the message) &
receiver (to interpret the message)

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments

• Transfer a program to be executed by another computer

Messages conform to a message protocol adopted by both the sender (to encode the message) &
receiver (to interpret the message)

• For example, bits at fixed positions may have fixed meanings

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments

• Transfer a program to be executed by another computer

Messages conform to a message protocol adopted by both the sender (to encode the message) &
receiver (to interpret the message)

• For example, bits at fixed positions may have fixed meanings

• Components of a message may be separated by delimiters

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments

• Transfer a program to be executed by another computer

Messages conform to a message protocol adopted by both the sender (to encode the message) &
receiver (to interpret the message)

• For example, bits at fixed positions may have fixed meanings

• Components of a message may be separated by delimiters

• Protocols are designed to be implemented by many different programming languages on many
different types of machines

5

Internet Protocol

The Internet Protocol

7

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

7

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

7

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

7

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

7

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

7

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

IPv4

7

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

IPv4

7

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

IPv4

7

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

Where to send
error reports

IPv4

7

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

Where to send
error reports

IPv4

7

E.g.,
192.168.1.1

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

Where to send
error reports

The packet knows
its sizeIPv4

7

E.g.,
192.168.1.1

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

Where to send
error reports

The packet knows
its sizeIPv4

7

Max length:
216 = 65,536

E.g.,
192.168.1.1

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

Where to send
error reports

Packets can't
survive forever

The packet knows
its sizeIPv4

7

Max length:
216 = 65,536

E.g.,
192.168.1.1

All machines
know IPv4

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Where to send
the packet

Where to send
error reports

Packets can't
survive forever

The packet knows
its sizeIPv4

7

Max length:
216 = 65,536

E.g.,
192.168.1.1

All machines
know IPv4

Decremented
on forwarding

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Packets are forwarded toward their destination on a best effort basis

Programs that use IP typically need a policy for handling lost packets

Where to send
the packet

Where to send
error reports

Packets can't
survive forever

The packet knows
its sizeIPv4

7

Max length:
216 = 65,536

E.g.,
192.168.1.1

All machines
know IPv4

Decremented
on forwarding

Transmission Control Protocol

Transmission Control Protocol

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:
§ The receiver can correctly order packets that arrive out of order

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:
§ The receiver can correctly order packets that arrive out of order
§ The receiver can ignore duplicate packets

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:
§ The receiver can correctly order packets that arrive out of order
§ The receiver can ignore duplicate packets

• All received packets are acknowledged; both parties know that transmission succeeded

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:
§ The receiver can correctly order packets that arrive out of order
§ The receiver can ignore duplicate packets

• All received packets are acknowledged; both parties know that transmission succeeded

• Packets that aren't acknowledged are sent repeatedly

9

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each

• Packets may arrive in a different order than they were sent

• Packets may be duplicated or lost

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams

• Implemented using the IP. Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:
§ The receiver can correctly order packets that arrive out of order
§ The receiver can ignore duplicate packets

• All received packets are acknowledged; both parties know that transmission succeeded

• Packets that aren't acknowledged are sent repeatedly

The socket module in Python implements the TCP

9

TCP Handshakes

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

• Lots of separate connections can exist without any confusion

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

• Lots of separate connections can exist without any confusion

• The number of required messages is minimized

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

• Lots of separate connections can exist without any confusion

• The number of required messages is minimized

Communication Rules:

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

• Lots of separate connections can exist without any confusion

• The number of required messages is minimized

Communication Rules:

• Computer A can send an initial message to Computer B requesting a new connection

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

• Lots of separate connections can exist without any confusion

• The number of required messages is minimized

Communication Rules:

• Computer A can send an initial message to Computer B requesting a new connection

• Computer B can respond to messages from Computer A

10

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which verifies
that communication is possible

"Can you hear me now?" Let's design a handshake protocol

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B

• Computer B knows that it can send data to and receive data from Computer A

• Lots of separate connections can exist without any confusion

• The number of required messages is minimized

Communication Rules:

• Computer A can send an initial message to Computer B requesting a new connection

• Computer B can respond to messages from Computer A

• Computer A can respond to messages from Computer B

10

Message Sequence of a TCP Connection

11

Message Sequence of a TCP Connection

Computer A

11

Message Sequence of a TCP Connection

Computer A Computer B

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Establishes packet numbering
system

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Establishes packet numbering
system

11

..

Data message from A to B

Data message from B to A

..
Acknowledgement

Acknowledgement

..

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Termination signal

Establishes packet numbering
system

11

..

Data message from A to B

Data message from B to A

..
Acknowledgement

Acknowledgement

..

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Termination signal
Acknowledgement & termination signal

Establishes packet numbering
system

11

..

Data message from A to B

Data message from B to A

..
Acknowledgement

Acknowledgement

..

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Termination signal
Acknowledgement & termination signal

Acknowledgement

Establishes packet numbering
system

11

..

Data message from A to B

Data message from B to A

..
Acknowledgement

Acknowledgement

..

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Termination signal
Acknowledgement & termination signal

Acknowledgement

Establishes packet numbering
system

11

..

Data message from A to B

Data message from B to A

..
Acknowledgement

Acknowledgement

..

Client/Server Architecture

The Client/Server Architecture

13

The Client/Server Architecture

One server provides information to
multiple clients through request and
response messages

13

The Client/Server Architecture

One server provides information to
multiple clients through request and
response messages

Server role: Respond to service
requests with requested information

13

The Client/Server Architecture

One server provides information to
multiple clients through request and
response messages

Server role: Respond to service
requests with requested information

Client role: Request information and
make use of the response

13

The Client/Server Architecture

One server provides information to
multiple clients through request and
response messages

Server role: Respond to service
requests with requested information

Client role: Request information and
make use of the response

Abstraction: The client knows what
service a server provides, but not
how it is provided

13

The Client/Server Architecture

One server provides information to
multiple clients through request and
response messages

Server role: Respond to service
requests with requested information

Client role: Request information and
make use of the response

Abstraction: The client knows what
service a server provides, but not
how it is provided

13

Client/Server Example: The World Wide Web

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

• Interpret requests and respond with content

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

• Interpret requests and respond with content

Web browser Web server

TCP Initialization Handshake

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

• Interpret requests and respond with content

HTTP GET request of content

Web browser Web server

TCP Initialization Handshake

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

• Interpret requests and respond with content

HTTP GET request of content

HTTP response with content

Web browser Web server

TCP Initialization Handshake

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

• Interpret requests and respond with content

HTTP GET request of content

HTTP response with content

Follow-up requests for auxiliary content

...

Web browser Web server

TCP Initialization Handshake

14

The Hypertext Transfer Protocol

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Uniform resource locator (URL)

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper"

Uniform resource locator (URL)

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper"

Uniform resource locator (URL)

Server response contains more than just the resource itself:

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper"

Uniform resource locator (URL)

Server response contains more than just the resource itself:

• Status code, e.g. 200 OK, 404 Not Found, 403 Forbidden, etc.

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper"

Uniform resource locator (URL)

Server response contains more than just the resource itself:

• Status code, e.g. 200 OK, 404 Not Found, 403 Forbidden, etc.

• Date of response; type of server responding

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper"

Uniform resource locator (URL)

Server response contains more than just the resource itself:

• Status code, e.g. 200 OK, 404 Not Found, 403 Forbidden, etc.

• Date of response; type of server responding

• Last-modified time of the resource

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/Server
architecture

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper"

Uniform resource locator (URL)

Server response contains more than just the resource itself:

• Status code, e.g. 200 OK, 404 Not Found, 403 Forbidden, etc.

• Date of response; type of server responding

• Last-modified time of the resource

• Type of content and length of content

15

Properties of a Client/Server Architecture

16

Properties of a Client/Server Architecture

Benefits:

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

• A single point of failure: the server

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

• A single point of failure: the server

• Computing resources become scarce when demand increases

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

• A single point of failure: the server

• Computing resources become scarce when demand increases

Common use cases:

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

• A single point of failure: the server

• Computing resources become scarce when demand increases

Common use cases:

• Databases — The database serves responses to query requests

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

• A single point of failure: the server

• Computing resources become scarce when demand increases

Common use cases:

• Databases — The database serves responses to query requests

• Open Graphics Library (OpenGL) — A graphics processing unit (GPU) serves images to a
central processing unit (CPU)

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components

• Enforces an abstraction barrier between client and server

• A centralized server can reuse computation across clients

Liabilities:

• A single point of failure: the server

• Computing resources become scarce when demand increases

Common use cases:

• Databases — The database serves responses to query requests

• Open Graphics Library (OpenGL) — A graphics processing unit (GPU) serves images to a
central processing unit (CPU)

• Internet file and resource transfer: HTTP, FTP, email, etc.

16

Peer-to-Peer Architecture

The Peer-to-Peer Architecture

18

The Peer-to-Peer Architecture

All participants in a distributed application contribute computational resources:
processing, storage, and network capacity

18

The Peer-to-Peer Architecture

All participants in a distributed application contribute computational resources:
processing, storage, and network capacity

Messages are relayed through a network of participants

18

The Peer-to-Peer Architecture

All participants in a distributed application contribute computational resources:
processing, storage, and network capacity

Messages are relayed through a network of participants

Each participant has only partial knowledge of the network

18

The Peer-to-Peer Architecture

All participants in a distributed application contribute computational resources:
processing, storage, and network capacity

Messages are relayed through a network of participants

Each participant has only partial knowledge of the network

http://en.wikipedia.org/wiki/File:P2P-network.svg 18

Network Structure Concerns

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

The time required to transfer a message through a peer-to-peer network depends on the route
chosen

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

The time required to transfer a message through a peer-to-peer network depends on the route
chosen

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

The time required to transfer a message through a peer-to-peer network depends on the route
chosen

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

The time required to transfer a message through a peer-to-peer network depends on the route
chosen

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

The time required to transfer a message through a peer-to-peer network depends on the route
chosen

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others

The time required to transfer a message through a peer-to-peer network depends on the route
chosen

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Example: Skype

20

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

20

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

20

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

20

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A Client B

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A Client B

Clients behind
firewalls cannot

communicate directly

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A Client B

Client C
Clients behind

firewalls cannot
communicate directly

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A Client B

Client C
A client not behind a
firewall may be used

as a supernode

Clients behind
firewalls cannot

communicate directly

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A Client B

Client C
A client not behind a
firewall may be used

as a supernode

Clients behind
firewalls cannot

communicate directly

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture

Login & contacts are handled via a centralized server

Conversations between two computers that cannot send messages to each other directly are
relayed through supernodes

Any Skype client with its own IP address may be a supernode

20

Client A Client B

Client C
A client not behind a
firewall may be used

as a supernode

Clients behind
firewalls cannot

communicate directly

