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Characteristics of distributed computing:

• Computers are independent — they do not share memory

• Coordination is enabled by messages passed across a network

• Individual programs have differentiating roles

Distributed computing for large-scale data processing:

• Databases respond to queries over a network

• Data sets can be partitioned across multiple machines (next lecture)
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• Transfer a program to be executed by another computer

Messages conform to a message protocol adopted by both the sender (to encode the message) & 
receiver (to interpret the message)

• For example, bits at fixed positions may have fixed meanings

• Components of a message may be separated by delimiters

• Protocols are designed to be implemented by many different programming languages on many 
different types of machines
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The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks

• Networks are inherently unreliable at any point

• The structure of a network is dynamic, not fixed

• No system exists to monitor or track communications

Packets are forwarded toward their destination on a best effort basis 

Programs that use IP typically need a policy for handling lost packets
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• Implemented using the IP.  Every TCP connection involves sending IP packets

• Each packet in a TCP session has a sequence number:
§ The receiver can correctly order packets that arrive out of order
§ The receiver can ignore duplicate packets

• All received packets are acknowledged; both parties know that transmission succeeded

• Packets that aren't acknowledged are sent repeatedly

The socket module in Python implements the TCP
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The client is a web browser (e.g., Firefox):

• Request content for a location

• Interpret the content for the user

The server is a web server:

• Interpret requests and respond with content

HTTP GET request of content

HTTP response with content

Follow-up requests for auxiliary content

...

Web browser Web server
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• Status code, e.g. 200 OK, 404 Not Found, 403 Forbidden, etc.

• Date of response; type of server responding

• Last-modified time of the resource
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