LINKED LISTS AND MIDTERM REVIEW

COMPUTER SCIENCE 61A

October 13, 2016

Linked Lists

1.1 Implementation

class Link:
empty = ()

def

def

def

def

_ init_ (self, first, rest=empty):
assert rest is Link.empty or isinstance (rest, Link)
self.first = first

self.rest = rest
_ _getitem__ (self, 1):
if 1 ==

return self.first
return self.rest[1-1]

__len_ (self):
return 1 + len(self.rest)
__repr__ (self):
if self.rest is Link.empty:
return 'Link ({})'.format (self.first)
else:
return 'Link ({}, {})'.format (self.first,

repr (self.rest))

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW Page 2
1.2 Questions

1. Write a function remove_duplicates that takes as input a sorted linked list of inte-
gers, 1nk, and mutates 1nk so that all duplicates are removed.
def remove_duplicates (1nk) :

>>> 1nk = Link(l, Link (1, Link(l, Link (1, Link(5)))))

>>> unique = remove_duplicates (lnk)
>>> len (unique)

2

>>> len (1lnk)

2

2. Define reverse, which takes in a linked list and reverses the order of the links. The
function may not return a new list; it must mutate the original list. Return a pointer
to the head of the reversed list.
def reverse (lnk):

nmmww

>>> a = Link (1, Link (2, Link(3)))
>>> r = reverse (a)

>>> r.first

3

>>> r.rest.first

2

CS 61A Fall 2016

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW

Page 3

3. Write multiply_lnks, which takes in a Python list of Link objects and multiplies
them element-wise. It should return a new linked list. If not all of the Link ob-
jects are of equal length, return a linked list whose length is that of the shortest
linked list given. You may assume the Link objects are shallow linked lists, and
that 1st_of_lnks contains at least one linked list.
def multiply_Ilnks (lst_of_1lnks):

>>>
>>>
>>>
>>>
>>>
48

>>>
12

>>>

()

' Q O W

§e)

= Link (2, Link(
= Link (6, Link(
= Link (4, Link/(

S

3
4
1
= multiply_lnks(

.first

.rest.first

. rest.rest.rest

Link (5)))
Link (2)))
Link (O,

[a, b,

cl)

Link(2))))

CS 61A Fall 2016

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW Page 4

Midterm Review

1. Define a function foo that takes in a list 1st and returns a new list that keeps only
the even-indexed elements of 1st and multiplies each of those elements by the corre-
sponding index.
def foo(lst):

>>> x = [1, 2, 3, 4, 5, 6]
>>> foo (x)
[0, 6, 20]

return |]

2. Implement the functions max_product, which takes in a list and returns the max-
imum product that can be formed using nonconsecutive elements of the list. The
input list will contain only numbers greater than or equal to 1.
def max_product (1lst):

"""Return the maximum product that can be formed using lst
without using any consecutive numbers
>>> max_product ([10,3,1,9,2]) # 10 = 9

90

>>> max_product ([5,10,5,10,5]) # 5 » 5 % 5
125

>>> max_product ([])

1

CS 61A Fall 2016

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW Page 5

3. An expression tree is a tree that contains a function for each non-leaf root, which
can be either ’ +’ or ’ «’. All leaves are numbers. Implement eval_tree, which
evaluates an expression tree to its value. You may want to use the functions sum and
prod, which take a list of numbers and compute the sum and product respectively.
def eval tree(tree):

"""Evaluates an expression tree with functions as root
>>> eval_tree(tree(l))

1

>>> expr = tree('x', [tree(2), tree(3)])

>>> eval_tree (expr)

6

>>> eval_tree(tree('t', [expr, tree(4), tree(b)]))
15

CS 61A Fall 2016

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW Page 6
4. The quicksort sorting algorithm is an efficient and commonly used algorithm to order
the elements of a list. We choose one element of the list to be the pivot element and
partition the remaining elements into two lists: one of elements less than the pivot
and one of elements greater than the pivot. We recursively sort the two lists, which
gives us a sorted list of all the elements less than the pivot and all the elements greater
than the pivot, which we can then combine with the pivot for a completely sorted list.

First, implement the quicksort_list function. Choose the first element of the list
as the pivot. You may assume that all elements are distinct.
def quicksort_list(lst):

>>> quicksort_list ([3, 1, 41])

(1, 3, 4]

if

pivot = 1st[0]

less =

greater =

return

5. We can also use quicksort to sort linked lists! Implement the quicksort_link func-
tion, without constructing additional Link instances.

You can assume that the extend_links function is already defined. It takes two
linked lists and mutates the first so that the ending node points to the second. extend_link
returns the head of the first linked list.

>>> 11, 12 = Link (1, Link(2)), Link (3, Link (4))
>>> 13 = extend_links (11, 12)

>>> 13

Link (1, Link (2, Link (3, Link (4))))

>>> 11 is 13

True

CS 61A Fall 2016

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW Page 7
def quicksort_link (link):

>>> s = Link (3, Link (1, Link(4)))
>>> quicksort_link (s)
Link (1, Link (3, Link(4)))

if

return link

pivot, =

less, greater =

while link is not Link.empty:

curr, rest = link, link.rest

if

else:

link =

less =

greater =

return

CS 61A Fall 2016

DISCUSSION 6: LINKED LISTS AND MIDTERM REVIEW Page 8
6. Implement widest_level, which takes a Tree instance and returns the elements at
the depth with the most elements.
def widest_level (t):
mmwn
>>> sum ([[1], [2]], [1)
(1, 2]
>>> t = Tree (3, [Tree(l, [Tree(l), Tree(5)]),
.. Tree (4, [Tree(9, [Tree(2)1)1)1)
>>> widest_level (t)
[1, 5, 9]

levels = []
x = [t]

while

= sum (, [1)

return max (levels, key=)
7. Complete redundant _map, which takes a tree t and a function £, and applies £ to
the node (2¢) times, where d is the depth of the node. The root has a depth of 0.
def redundant_map(t, f):

>>> double = lambda x: x*2

>>> tree = Tree(l, [Tree(l), Tree (2, [Tree(l, [Tree(1l)]1)1)1])
>>> print_levels (redundant_map (tree, double))

(2] # 1 » 2 ° (1) ; Apply double one time

(4, 8] # 1 « 2 ~ (2), 2 = 2 ~ (2) ; Apply double two times
[16] # 1 = 2 © (2 © 2) ; Apply double four times

[256] # 1 » 2 © (2 = 3) ; Apply double eight times

t.root =

new_f =

t .branches =

return t

CS 61A Fall 2016

